Adsorption of H2 and CO on Iron-based Catalysts for Fischer-Tropsch Synthesis

نویسندگان

  • Weixin Qian
  • Haitao Zhang
  • Hongfang Ma
  • Yongdi Liu
  • Weiyong Ying
  • Dingye Fang
چکیده

The adsorption properties of CO and H2 on iron-based catalyst with addition of Zr and Ni were investigated using temperature programmed desorption process. It was found that on the carburized iron-based catalysts, molecular state and dissociative state CO existed together. The addition of Zr was preferential for the molecular state adsorption of CO on iron-based catalyst and the presence of Ni was beneficial to the dissociative adsorption of CO. On H2 reduced catalysts, hydrogen mainly adsorbs on the surface iron sites and surface oxide sites. On CO reduced catalysts, hydrogen probably existed as the most stable CH and OH species. The addition of Zr was not benefit to the dissociative adsorption of hydrogen on iron-based catalyst and the presence of Ni was preferential for the dissociative adsorption of hydrogen. Keywords—adsorption, Fischer-Tropsch synthesis, iron-based catalysts

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KCl Promoted Cobalt-iron Nanocatalysts Supported on Silica: Catalytic Performance and Characterization in Fischer-Tropsch Synthesis

The SiO2 supported cobalt-iron nano catalysts were prepared by the sol-gel method. This research investigated the effects of (Co/Fe) wt.%, different Co/Fe ratio at different temperature and loading of KCl wt.% for Fisher-Tropsch synthesis (FTS). The results were showed that the catalyst containing 50 wt.% (Co/Fe)/SiO2 (Co/Fe ratio is 70/30) which promoted with 0.6 wt.% KCl is an optimal nano ca...

متن کامل

The Application of Hybrid RSM/ANN Methodology of an Iron-based Catalyst Performance in Fischer-Tropsch Synthesis

In this research, the performance and kinetics of an iron/manganese oxide catalyst in a fixed-bed reactor by Fischer-Tropsch Synthesis is studied. The range of operating conditions are; P = 1 – 12 bar, T = 513 - 553 K, H2/CO ratio = 1 - 2 and GHSV = 4200 – 7000 ((〖cm〗^3 (STP))/h/g_cat). The effect of these independent variables, on Fischer-Tropsch product were performed by using a statistical m...

متن کامل

A review of Fischer-Tropsch synthesis on the cobalt based catalysts

Fischer-Tropsch synthesis is a promising route for production of light olefins via CO hydrogenation over transition metals. Co is one of the most active metals for Fischer-Tropsch synthesis. Some different variables such as preparation parameters and operational factors can strongly affect the selectivity of Fischer-Tropsch synthesis toward the special products. In the case of preparat...

متن کامل

Investigation of Products Distribution In Fischer-Tropsch Synthesis By Nano-sized Iron-based Catalyst

Nano-sized iron-based catalyst was prepared by the micro-emulsion method. The composition of the final nano-sized iron catalyst, in term of the atomic ratio contains: 100Fe/4Cu/2Ce. Experimental techniques of XRD, BET, TEM and TPR were used to study the phase, structure and morphology of the catalyst. Fischer-Tropsch Synthesis (FTS) reaction test was performed in a fixed bed reactor at pressure...

متن کامل

Effect of calcium promoter on nano structure iron catalyst for Fischer–Tropsch synthesis

The Fischer-Tropsch synthesis (FTS) has been recognized as a heterogeneous surface-catalyzed polymerization process. During this process, CHx monomers formed via the hydrogenation of adsorbed CO on transition metals produce hydrocarbons and oxygenates with a broad range of chain lengths and functional groups. A series of Fe/Cu Fischer-Tropsch synthesis catalysts incorporated with a calcium prom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012